新闻中心 新闻中心
  • 泰达仪植物补光灯(6)—光与光合色素之间的规律2023 / 3 / 16

             照射到植物体上的太阳光能,只有光合有效辐射的光才能被植物利用进行光合作用。        光合作用是绿色植物利用叶绿素等光合色素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水转化为储存着能量的有机物,并释放出氧气的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。光合作用是一切生物体和人类物质的来源。        影响植物光合作用的因素较多,如光照、湿度、水分、氧气含量、矿质营养等,其中光照对光合作用的影响至关重要。光照能促进细胞的增大和分化,影响细胞分裂和伸长。植物体内各器官和组织保持发育上的正常比例与太阳辐射强度直接相关。光照充足能促进光合作用,积累更多的营养物质,有助于植物开花。        由上可知,有效的光照和光合色素是影响植物生长最重要的两大因素。        光合色素可以吸收光能来产生一系列的生化反应,不同的色素吸收的波长不同,从而对植物的生长发育产生影响。例如:叶绿素能够捕捉蓝光的光线作为光合作用的能源。不同波长的光线,通过与其相关的色素作用而影响植物体内的激素平衡,进而引发植物的生理生态变化。                做为一家专注于生态与环境科学专业仪器设备,提供国内专业的LED植物灯、光照培养箱、植物人工气候箱、智能气候室及LED智能人工环境控制系统的公司,我们在长期的生产实践中,总结出以下规律:   蓝光波段 439nm,叶绿素a蓝光波段吸收峰 450-460nm,β-胡萝卜素吸收峰 469nm,叶绿素b蓝光波段吸收峰   430-470nm,叶绿素A、叶绿素B吸收峰,对植物营养生长很重要波段,尤其是可以抑制徒长。   绿光波段 525nm,绿光,对光合吸收作用不明显,但对植物生长方向和判断环境信号非常重要,会影响植物节间距离。   黄光波段 590nm,黄光,类胡萝卜素吸收峰   红光波段 642-645nm,叶绿素b红光吸收峰 666-667nm,叶绿素a红光吸收峰 660nm红光,对植物开花非常重要。  

  • 泰达仪植物补光灯(5)—光合色素2023 / 3 / 13

           光合作用是绿色植物利用叶绿素等光合色素和某些细菌利用其细胞本身,在可见光的照射下,将二氧化碳和水转化为储存着能量的有机物,并释放出氧气的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。光合作用是一切生物体和人类物质的来源。        影响植物光合作用的因素较多,如光照、湿度、水分、氧气含量、矿质营养等,其中光照对光合作用的影响至关重要。光照能促进细胞的增大和分化,影响细胞分裂和伸长。植物体内各器官和组织保持发育上的正常比例与太阳辐射强度直接相关。光照充足能促进光合作用,积累更多的营养物质,有助于植物开花。              与光合作用相关的色素,总体上可以分为两大类:类胡萝卜素(占比1/4)和叶绿素(占比3/4)。            从吸收光谱上来看,类胡萝卜素以吸收蓝紫光为主,叶绿素以吸收红光和蓝紫光为主。        其中类胡萝卜素分两种:胡萝卜素和叶黄素。        叶绿素分为两种:叶绿素a和叶绿素b。        下一篇文章我们将会向大家详细阐述波长与色素吸收峰之间的规律。    

  • 泰达仪植物补光灯(4)—泰达仪植物补光灯的优点2023 / 3 / 6

           光是植物生长发育的基本因素之一。光对植物的生长、形态建成、光合作用、物质代谢以及基因表达均有调控作用。植物在它的整个生命周期中始终处于一个不断变化的光环境中,在长期的进化中,植物不仅适应了光环境的变化,而且还能相互影响而改变周围的光环境。        光环境是影响植物光合作用最重要的因素。光环境分为三个部分光照度(光量)、光质(光谱分布)以及光周期(明暗期时间)。        做为一家专注于生态与环境科学专业仪器设备,提供国内专业的LED植物灯、光照培养箱、植物人工气候箱、智能气候室及LED智能人工环境控制系统的公司,我们生产的植物补光灯采用了适应植物吸收光谱成分的新型高效节能光源—发光二极管,作为一种可用于植物照射的新型半导体光源。        泰达仪植物补光灯是一种可以有效地把电能转变成电磁辐射的装置。相较于目前普遍使用的荧光灯或高压钠灯而言,具有以下优点: 使用直流电,供电电压较低,仅为1V。 体积小、结构紧凑,性能稳定。 波长固定,波谱宽度广。 冷光源,可近距离照射植物,提高空间利用率。 对不同光质和发光强度实现单独控制。 光量可调整,可提高单位面积栽培量。 提供高频间歇给光模式。 光质可调整,可发出光波较窄的单色光,如红外、红色、橙色、黄色、绿色、蓝色等。 可以根据不同需要任意组合如红光配合蓝光的使用。 能提供适当的光质红光与红外光搭配。 耐冲击,不易破碎,不含汞,无污染,废弃物可回收利用。 使用寿命是普通光源的数十倍,特强的耐用性。    

  • 泰达仪植物补光灯(3)—光合有效辐射(PAR)与勒克斯(lx)的区别2023 / 3 / 2

       上篇文章解答了光合有效辐射的相关问题,下面我们就详细解答一下光合有效辐射与勒克斯的区别。   光合有效辐射(PAR)         投射到地球表面的太阳辐射能的波长为300~3000 nm,但其中只有波长在380~710nm(占太阳总辐射的40~50%,与可见光基本重合),可以被植物叶绿体吸收,用来进行光合作用。这一波长范围的辐射能就称为光合有效辐射PAR(Photosynthetically Active Radiation)。国际单位为:umol/m-2 s-1。准确来讲,描述植物光强的指标应该用PAR(指植物能够吸收的光强)。     勒克斯(Lux或lx,光照度)         光照度,可简称照度,其计量单位的名称为“勒克斯”,简称“勒”,单位符号为“lx”,表示被摄主体表面单位面积上受到的光通量。被光均匀照射的物体,在1平方米面积上所得的光通量是1流明时,它的照度是1勒克斯。适宜阅读和缝纫等的照度约为500勒克斯。         1勒克斯等于1流明/平方米,即被照射主体每平方米的面积上,受距离一米、发光强度为1坎德垃的光源,垂直照射的光通量。         勒克斯是一个引出单位(由流明(lm)引出),1lx=1lm/㎡;流明光通量是根据人眼对光的响应而定义的,比如:人眼最敏感的555nm的黄绿光,1W功率全部转换光线为683lm;对于其它颜色的光,比如650nm的红色,1W的光仅相当于73流明。             简而言之,         光合有效辐射(PAR)指的是这个光对植物光合作用大不大。         勒克斯(Lux或lx,光照度)指的是这个光强不强,亮不亮。         勒克斯是一个反应物体明暗(对眼睛而言)的指标,与植物光合作用没有直接关联。因为人眼对不同波长光线敏感性不同,所以PAR与lx无法直接换算,换算系数与光源的光谱特性有关,不存在简单的比例关系。     […]

  • 泰达仪植物补光灯(2)—光合有效辐射(PAR)2023 / 2 / 28

            做为一家专注于生态与环境科学专业仪器设备,提供国内专业的LED植物灯、光照培养箱、植物人工气候箱、智能气候室及LED智能人工环境控制系统的公司。我们对灯光的选择尤为讲究,很多客户并不清楚光合有效辐射对植物的影响,下面我们就详细解答一下。           投射到地球表面的太阳辐射能的波长为300~3000 nm,但其中只有波长在380~710nm(占太阳总辐射的40~50%,与可见光基本重合),可以被植物叶绿体吸收,用来进行光合作用。这一波长范围的辐射能就称为光合有效辐射PAR(Photosynthetically Active Radiation)。国际单位为:umol/m-2 s-1。准确来讲,描述植物光强的指标应该用PAR(指植物能够吸收的光强)。             对植物生长来说,光合有效辐射是非常重要的环境要素。在设施农业种植中,不同的作物品种以及不同的生长发育阶段所需要的光照强度和时长不同。要想达到好的种植效果,就需要根据植物的生长发育规律来调节适宜的光照强度和时间。例如,光合作用中被植物所利用并转化为化学能的波段主要为红光和蓝光,所以在可见光谱中,波长为620~760nm的红光和波长为435~490nm的蓝光对光合作用最为有效,这就是我们泰达仪的优势所在,能够根据您的需求,定制有针对性的光照强度和时间,合理调控光合有效辐射,不仅能有效节约光照电力,还能进一步提高作物产量和质量。    

  • 泰达仪植物补光灯(1)—常见光源色度参数在灯管标签上的体现(色温、显色指数)2023 / 2 / 23

            做为一家专注于生态与环境科学专业仪器设备,提供国内专业的LED植物灯、光照培养箱、植物人工气候箱、智能气候室及LED智能人工环境控制系统的公司。我们对灯管的选择尤为讲究。请问图1灯管是什么光源的灯管?上面有840,还有COOL WHITE,它是TL84呢还是CWF?让我们了解下灯管上参数的含义吧: F代表Fluorescent lamp,也就是荧光灯,也称为日光灯; 18W是功率,也就是18瓦; 840是色度参数,第一个8代表“显色指数Ra“为80~90;第二三位40代表“色温“4000K,也就是光源的颜色 而840右侧小字-T8,代表灯管的粗细; 荧光灯管按管径大小分为:T12、T10、T8、T6等规格;一个T=1/8英寸,一英寸为25.4mm,所以T8为:25.4mm。一般管径越细,光效越高,节电效果越好,但管径越细,启辉点燃电压越高,对镇流器技术性能要求越高。   显色指数Ra: 英文:color rendering index,缩写为CRI,记为Ra 用于量化那些与假设使目标具有真实颜色的参考光源相比的差异。 参考光源或者是低于5000K CCT的黑体辐射体(如A),或者是具有5000K及以色温的CIE日光(如D65)。 是照明灯具行业常用的定义光源对物体色调复原能力的物理量。 显色指数Ra对应显色性能如下: 90~100 显色性极好 80~90 显色性很好 60~80 中等显色性 <60 显色性差   色温: 英文:color temperature,最常用correlated color temperature 相关色温,缩写CCT 通过比较一个光源的光色和某一温度下黑体辐射的光色,相一致时候的黑体的温度被称为光源的色温。单位为K 色温与光源颜色的关系如下: 2700K 超暖白色extra warm white 3000K 暖白光 warm white 3500K 中性白光 neutral white 4000K 冷白光 cool white […]

  • ABB LGR 系列产品-水同位素分析仪(2)2023 / 2 / 21

      三、ABB LGR 便携式液态水同位素分析仪 (δ2 H, δ18O) Ultraportable Liquid Water Isotope Analyzer   ■ 重量只有 15 kg,功率小于 60 W ■ 高精度及高准确性 ■ 可进行野外在线连续测量,提供了同位素测量的新方式 ■ LGR 专利的光谱污染诊断技术(SCI),可以对含有有机内溶物的样品数据进行有效的修正,同类产品中样品范围最广 ■ 正负标样,耗材配件齐全     四、ABB LGR 水汽同位素分析仪 (δ2 H, δ17O, δ18O, H2O) Water Vapor Isotope Analyzer   ■ 同时测量 δ2H, δ17O, δ18O 和 H2O 浓度 ■ 与水汽同位素标气发生器联用,提供最高准确度的测量 ■ 2 Hz 高频测量 ■ 最宽的量程:水汽浓度 […]

  • ABB LGR 系列产品-水同位素分析仪(1)2023 / 2 / 14

    一、ABB LGR 水同位素分析仪(δ2 H, δ17O, δ18O, d-excess,17O-excess, H2O ) Isotopic Water Analyzer 世界上第一款同时测量δ2H, δ17O 和δ18O的分析仪器,兼具液态水与气态水测量。同所有的 LGR 分析仪一样,ABB LGR 水同位素分析仪能实时提供高分辨率激光吸收光谱,使用户能够全面掌握和诊断仪器的性能表现;采用了内置计算机(Linux OS 将病毒风险降到最低),以提供数据的连续存储和测量等功能;具有远程控制功能,用户可以通过网络浏览器在任意地点对分析仪进行操作,也可以通过远程登录实时共享数据,并进行仪器诊断。     二、ABB LGR 液态水同位素分析仪(δ2 H, δ17O, δ18O, d-excess, 17O-excess) Liquid Water Isotope Analyzer 2006 年 LGR 第一台基于 OA-ICOS 技术的液态水同位素分析仪问世,国际原子能机构(IAEA)经过长时间的测试,对其性能非常满意,并专门为 LGR 液态水同位素分析仪编写制作了操作手册和视频光盘。 2010 年初,LGR 推出增强型的液态水同位素分析仪(LWIA-912,原 912-0008),是同时兼具高速度和高精度的激光液态水稳定性同位素分析仪。 2013 年,LGR 推出可以同时测量 δ2H, δ17O, δ18O 的 Triple——液态水同位素分析仪(TLWIA-912,原 912-0050)。 […]

  • ABB LGR 系列产品-氧化亚氮同位素分析仪2023 / 2 / 1

    ABB LGR 氧化亚氮同位素分析仪 Isotopic N2O Analyzer     ABB LGR 氧化亚氮同位素分析仪采用激光吸收光谱方法测量稳定性同位素,相对于传统的同位素比质谱技术, 有着一些应用上的优势,在此主要以 N2OIA 为例做一简要介绍:   第一,测量不受目标气体中同分子量的 CO2 的影响: N2O 和 CO2 的分子量同为 44,以质量无法区分。在环境中 CO2 的浓度是 N2O 的一千倍还多,所以测量之前一定要去除 CO2,这样既增加了前处理过程,也带来了系统误差。类似的,采用质谱仪测量 CO2 中 13C 的丰度时,13C16O2 分子量是45,而 15N14N16O 也是 45,甚至 12C17O16O 的分子量也是 45,这些都是系统误差的一部分。而采用光谱的方法,N2O 和 CO2 的吸收峰互相并无干扰,所以能够消除此类影响。   第二,能分辨同位素异构体 14N15NO 和 15N14NO: N2O 分子是一种线形排布的分子(N-N-O),有两种主要的含有 15N 原子的同位素异构体分子。中间为 15N 的分子(14N15N16O)和末端为 15N 的分子(15N14N16O) […]

  • 九圃助力中国科学家在植物抗病领域取得重要进展2023 / 1 / 18

    九圃助力中国科学家在植物抗病领域取得重要进展                            —— 科浦青春访辛秀芳研究员     2021年3月11日,一位85后的美女研究员带领一支平均年龄只有26岁的科研团队,占据了各大新闻网、植物科研平台、中国科研圈的头条。 中国科学院分子植物科学卓越创新中心辛秀芳研究团队在国际顶尖学术期刊《nature》上,发表题为“pattern-recognition receptors are required for NLR-mediated plant immunity”(“NLR蛋白介导的植物免疫需要模式识别受体”)的最新研究成果,解答了植物免疫系统如何协同御敌这一重要科学问题,揭示了植物 两大类免疫系统通路PTI和ETI并不是独立发挥功能,而是存在相互放大的协同作用,从而在应对病原菌的入侵时能够输出持久且强烈的免疫响应,该研究为人们重新认识和理解植物免疫提供了重要的理论依据,为培育优良持久抗病的农作物提供了新思路。 研究成果科普   本次科学突破,课题组采用了九圃品牌的植物培养箱与LED植物生长灯管,用于培养研究所用的拟南芥等植物,为课题研究提供了基础对象。 课题组选用的九圃LED植物生长灯: 采用400-700nm最适合植物光合作用的RGB组合光谱,足够的红光:保证植物生长速度;足够量的蓝光:增强植物营养;减少绿光比例:上色好不抑长。该款灯管在发售前,经过了大量的实验数据验证,采用双芯片灯珠,有效减少光污染,发光柔和不刺眼。 课题组选用的九圃500L植物培养箱: 外形简洁优雅,四角采用保护性弧面设计,可按需移动。内胆采用食品级不锈钢材料,层板可拆间距可调。7.0英寸人机交互触控界面,中英文双控系统,可下载长期保存运行参数。采用PLC微计算机控制程序,基础配置精准温控、湿控、光照、风量等模拟植物自然生存环境要素,可选配光谱分析检测系统、APP远程控制系统、远程视频监控系统、气体控制系统等特殊环境模拟因素。 种子是农业的“芯片”。而植物学基础研究则是为“芯片”上的每个功能解锁背后的机理。辛秀芳表示,未来可以在不同植物,尤其是主要农作物中,深入探究这两层免疫系统的关系,以期使机理发现用于种质资源的创新。九圃也希望能辅助更多的科研工作者,在植物科研领域取得越来越多的科研成果,在背后为我国的植物科研事业贡献绵薄之力。            

Secured By miniOrange
010-6945-8174 发送短信